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Abstract. Production systems are considered to be dynamical systems. A dynamical approach for 
modelling and control of production systems evolves out of the context of new developments in 
production research. A model of an elementary production system is set up in order to demonstrate 
the idea of control in the introduced approach. Some simulation results are given. 

 
 

INTRODUCTION 
 
The development of Nonlinear Dynamics and its applications enables us to 

understand and describe complex systems where linear approaches fail or are too far 
from reality. Complex dynamic behaviour can occur in relatively simple production 
systems. Beaumariage and Kempf have shown the sensitive dependence of throughput 
times on the initial conditions and scheduling rules in a production system model [1]. 
The origin of this unstable behaviour is not obvious. Other authors find even contrary 
results [2]. Bartholdi, Bunimovich and Eisenstein have shown, that deterministic 
models can describe the dynamics of production lines appropriately [3][4]. 
Understanding the production dynamics is therefore a fundamental part in a dynamical 
approach for modelling and control of production systems.  

Classical production planning and control systems (PPC systems) are based on 
concepts that do not consider the production system as a dynamical system. Usually, 
heuristic approaches are preferred in order to simulate the production process and its 
scheduling and control. But optimisation methods do not provide the controller with 
good results if there are some changes during the optimisation period [5][6]. In the 
context of today’s highly dynamic market with its rapid changes in demand, flexibility 
and variety are recognized as increasing measures of modern PPC systems. 

In the third section of this paper, a dynamical point of view is introduced, which 
incorporates dynamical aspects of a concept level of PPC, taking into account 
functional aspects of PPC and modelling of production systems as well. 
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PRODUCTION SYSTEMS AND PPC CONCEPTS 
 
Production systems can be classified as capacity oriented production vs. customer 

oriented production. Customer oriented production systems are considered to have a 
high degree of flexibility. They need information feedback from the shop floor in order 
to influence the product flow in short time intervals in a non-periodic, order dependent 
way to meet the needs of a highly dynamic market. This type of production system is 
considered in this paper. 

The production planning and control in an enterprise consists of the following 
problems: 

 
• Production program planning 
• Material requirements planning 
• Throughput time scheduling 
• Capacity requirement planning 
• Order release 
• Order monitoring and control 
 
All of these problems have to be solved by a PPC system, which is able to run the 

entire manufacturing process. How they are solved, in what order, if local or as part of 
a global strategy, depends on the PPC concept underlying the PPC system. In general, 
PPC systems are designed to find optimal solutions for specific PPC problems. The 
most important optimisation goals are throughput times, total costs, capacity 
utilization, inventory costs and delivery reliability. Thereby, strategies for different 
objectives can lead to contrary results, e.g. maximal capacity utilization and minimal 
throughput times.  

Models of production systems are used to put these strategies into practice. They are 
derived from classical optimisation tasks studied in Operations Research [7]. The 
model for the production system itself therefore consists of different optimisation 
problems. There is no interaction of these particular theories. This could be developed 
in a meta-theory, but in general, the results will be hard to interpret [8].  

Most recent PPC systems work in line with successive planning concepts consisting 
of successive planning steps mentioned above. It is widely used but also criticised 
because it lacks the interaction between the planning steps [8]. Several approaches try 
to overcome the difficulties resulting from this planning and control scheme [8][9]. 
They extend the possibilities of traditional PPC systems towards faster adaptation to 
changes in demand. 
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THE DYNAMICAL APPROACH 
 

Why a Dynamical Approach? 
 
Known concepts in PPC are normally founded on models for parts of PPC that 

solve local problems like the optimisation function of lot sizes [10]. Optimisation 
models (solved by exact algorithms or heuristic approaches), as discussed in 
Operations Research, are often not satisfying even at a low level of complexity, e.g. 3 
machines, 2 job steps, more than 2 products [10]. They do not describe the qualitative 
behaviour.   

Dynamical models are different from optimisation models as they describe relations 
between system variables. The main principle is understanding the dynamic behaviour 
instead of finding solutions for particular problems. To get predictable results, an 
intrinsic deterministic model is necessary, into which stochastic influences can be 
incorporated later on. Bartholdi, Bunimovich and Eisenstein have shown that sewing 
production lines can be described by way of a deterministic model [3][4]. The dynamic 
behaviour was driven exclusively by deterministic rules.  

In a more complex production system, a number of deterministic processes occur. A 
classification of the functional aspects of PPC is therefore necessary. It will be 
discussed in the following sections.  

 
 

The Idea of the Dynamical Approach 
 
Rapid adaptation to frequent changes in demand and product mix is required in a 

customer oriented production system. The point of view put forward in this paper is 
the combination of ideas founded on the Nonlinear Dynamics Theory and PPC 
research into a new approach of modelling and control.  

The dynamical approach is a generalized approach which includes modelling of 
manufacturing processes and a dynamical control mechanism. This includes analysing 
dynamic behaviour according to Nonlinear Dynamics and solving PPC problems as 
well. The starting point for the control of chaos is the phase space of the system, which 
is spread out by the system variables. Several methods for the control of chaos have 
been developed [11].  

The dynamics of particular manufacturing processes is caused by rules and 
conditions, which are parts of the functional structure of the PPC system. The 
dynamical approach consists of 3 leve ls of description: 

 
1.   Modelling of the production system 
2.   Dynamical control 
3.   Functional structure 
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FIGURE 1. The dynamical approach. 

 
 
Figure 1 shows the interaction of level 1 (product flow) and level 2 (information 

flow). A system state is defined which represents the actual situation in the production 
system. It is derived from the state space of the system, which contains the time series 
of measured data in analogy to the phase space of physical systems. Applications to 
production systems use variables related to the work content in the system like the so-
called “work- in-process” (WIP), a widely used key parameter of manufacturing.  

Information feedback from the shop floor and the arrival of new orders update the 
system state. This can be put into practice by frequent measurements of system 
variables like buffer levels, WIP of machines or system specific variables. To 
determine the system state, further analysis of the data is necessary in complex realistic 
models. This can be done by means of Nonlinear Dynamics Theory. In simple cases, 
the immediate construction of state spaces from the time series can reveal the 
dynamics of the system. An example will be given in the last section of this paper. 

The control mechanism consists of 3 steps: 
 
1.   The System is in equilibrium. 
2.   Disturbances occur. 
3.   A new equilibrium is reached after dynamic adjustment of the system. 
 
Orders are regarded as disturbances, leading to a new system state which includes 

reorganisation of order sequences. 
In Level 3, basic functional aspects are collected in independent functional groups 

that enable the system to work. They are at first a framework for modelling the 
production system and provide finally possibilities to control the production process by 
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a controller or by the system itself. The latter case is a step towards self-control, which 
is a fundamental idea in the dynamical approach. 

The following functional groups are defined: 
 
• The structure 
• The capacity 
• The operational rules 
• The order release 
• The queuing policies 
 
These functional groups generate the dynamics of a production system and enable 

and influence the product flow through the system. They are discussed in detail in the 
next section. 

 
 

The Functional Groups in the Dynamical Approach 
 

The Structure 
 
The functional group “structure” contains information about the number and 

arrangement of work stations, machines, buffers or storages necessary to describe the 
manufacturing process sufficiently. The hierarchy of structural information allows a 
more or less detailed description depending on the modelling aims.  

The structure also contains information about the product flow. It shows how 
different types of products can be put through a system. This becomes relevant, for 
instance, in parallel manufacturing facilities where it is possible to do the same job at 
different machines. The structure of the product flow is determined by the layout of the 
shop floors and by the process plans of every product in the production program. In a 
typical job shop production system, one finds a complex situation with a number of 
machines arranged according to their functions, e.g. turning, milling, drilling etc. 
Therefore, the product flow contains convergences, division and  feedback loops. 

The structure of the product flow is considered as a function of the structure and 
state of the production system. Changes in the structure, e.g. caused by machine 
replacements, immediately influence the structure of the product flow and system state 
due to the dynamic interactions instead of new planning steps.  

 
 

The Capacity 
 
The capacity of a production system includes three important aspects: the capacity 

of space, the capacity of time and the capacity of manufacturing. The capacity of space 
describes the physical space to store and manufacture raw material, sub-assemblies and 
final products, e.g. storages and buffers. Capacity of time means the working time in a 
day, e.g. 8 or 16 hours per working day. The capacity of manufacturing contains the 
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volume of production, product variety, quality measures and other parameters 
depending on machine parameters and structure.  

Capacity is usually considered as a parameter (or a set of parameters) in production 
systems characterized by upper and lower limits. In a number of models there are no 
capacity limitations. In the dynamical approach, a detailed description of capacity is 
necessary to enable the system to adjust itself in a flexible way. Therefore, all three 
capacities are considered as variables that can be continuously modified.  

So the role of storages and buffers could move from a passive box with fixed upper 
and lower limits to an active element. The flexible handling of the capacity of time 
(overtime work, part-time work) is a common procedure to balance costs and demand. 
The capacity of manufacturing is a variable value if at least one of the processes 
affecting this capacity changes over time. An example for a large scale change is a 
growing product variety that causes additional setup processes at the machines. This 
increases the throughput times and so decreases the capacity to manufacture these 
products. Examples of small scale changes to the capacity of manufacturing are 
machine breakdowns or missing tools, late deliveries of parts or rush orders. 
 
 

The Operational Rules 
 
If demand exists and manufacturing orders are waiting to be released and processed, 

the operational rules generate the dynamics of a production system. Such rules are 
generally simple handling processes but need to be defined in detail. An example of an 
operational rule is: what happens in a machine if the input buffer is empty or if the 
output buffer is full and how does this effect the adjacent machines and buffers. 

There are some investigations that identify and eliminate such constraints in a 
production system [12]. In the majority of cases, the order and material flow and the 
position of the constraint are considered to be constant and static. This assumption is 
appropriate for a flow shop production system with a constant demand and a constant 
product mix. But for a job shop, changing demand and customer-specific products are 
typical. In this case, the order and material flow and therefore the position of 
constraints vary over time.  

The dynamical approach suggests a dynamic adjustment of the operational rules on 
the current situation in the production system. An example is given in the last section 
of this paper. 

 
 

The Order Release 
 
In conventional PPC systems, the production orders are released after the 

throughput time scheduling, the capacity planning and the order sequencing. Order 
sequence and release dates are more or less fixed. Such a production schedule assumes 
constant throughput times and capacity availabilities during the entire planning period. 
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If rush orders must be released or resources fail, the fixed production schedule 
becomes void. 

This problem is well-known and has been investigated as the successive concept for 
PPC fails against the background of a highly dynamic market with a growing product 
variety, customer specific products and short delivery times [13][14]. 

The dynamical approach suggests a dynamic order release depending on both the 
incoming customer orders and the actual situation on the shop floor. 

 
 

The Queuing Policies 
 
Queuing policies are rules that determine the withdrawal of material from buffer to 

manufacture on a machine. A well-known and widely used queuing rule is “first in - 
first out”. Thereby, the processing sequence of the orders remains constant. Dynamic 
queuing rules like “least average static slack” or “least average dynamic slack”  cause 
withdrawal depending on the stage of processing and due-date. But they do not take 
into account the situation at the work stations.  

The dynamical approach allows the choice between different queuing rules. For the 
control of the order flow under quickly changing conditions, the dependence on the 
system state will play an important role.  

 
 

A DYNAMICAL MODEL OF A PRODUCTION SYSTEM 
 

The Boundary Conditions 
 
The following sections will demonstrate the function of operational rules which 

influence the production process depending on the system state. The operational rules 
are considered dynamic objects. All other functional groups are kept constant. The 
goal is to control the production system via its system state by means of parameter 
changes in the operational rules. 

Structure: An elementary production system with two work stations as shown in 
figure 2 will be considered. The structure of the product flow is linear with one input 
and one output channel assigned to each work station.  

 
 
 

 

FIGURE 2. Production system model consisting of two work stations with work-in-process WIP(i) and 
product flow velocities v(i). 

 
 

Work station 1  
WIP1(i) 

Work station 2 
WIP2(i) 

v1(i) v2(i) v3(i) 
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Operational rules: The current work-in-process of every work station is 
represented by the variable WIP(i) where i is the number of discrete time steps. The 
product flow into and out of the work station is represented by the product flow 
velocities v(i), which can be interpreted as work per time unit. Therefore, the variation 
of the work- in-process of the work stations is indicated by 

 
∆WIP(i) = WIP(i+1) − WIP(i) = τ  ⋅ (vin(i) − vout(i)) (1) 

 
with τ as time step size determining the grade of discretisation. One approach to 

dynamic feedback control is the regulation of the product flow depending on the work-
in-process: 

 
v1(i) = COM1 ⋅ (WIP1max – WIP1(i)) (2) 
v2(i) = COM2 ⋅ (WIP2max – WIP2(i)) (3) 

v3(i) = COM3 ⋅ WIP2(i) (4) 
 
The parameters COM are constant, normalized production rates.  
Capacity: The capacity of manufacturing is described by the production rates of the 

work stations (COM), which are kept constant. The work- in-process is limited by the 
maximum buffer level WIPmax  

 
0 ≤ WIP ≤ WIPmax (5) 

 
Queuing policies: The global queuing policy is „first in – first out“. 
Order release: There are no manufacturing orders with due-dates. Only the product 

flow between two work stations as a part of a more complex production system is 
considered.  

 
 

The Dynamics of the Linear Coupled System 
 
Under the assumptions named in the previous section, the work- in-process can be 

described as iterative mechanisms: 
 

WIP1(i+1) = WIP1(i) + τ ⋅ (v1(i) − v2(i)) (6) 
WIP2(i+1) = WIP2(i) + τ ⋅ (v2(i) − v3(i)) (7) 

 
The WIP levels change their values according to the sum of preceding WIP levels 

and inputs and outputs in each iteration step. So the work stations are linearly coupled 
via the product flow velocity 2. The dynamic behaviour of this system is generated by 
equations 6 and 7, which can be understood as the operational rules for the 
manufacturing process.  

This system ran in a simulation with the following system parameters and initial 
conditions:  
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τ = 1, WIP1max = WIP2max = 1, WIP1(1) = 0.4, WIP2(1) = 0.9, COM1 = 0.9, 

COM2 = 0.4, COM3 = 0.4.  
 
The system stabilises itself after a few iteration steps (see figure 3 and 4). The state 

space diagram shows the system state {WIP1(i), WIP2(i)} proceeding from the initial 
value (0.4, 0.9) to the stabilization point (0.78, 0.5). The dynamic behaviour of the 
system does not depend on the initial values nor on the relation of the production rates 
COM. 
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FIGURE 3. WIP levels of the linear coupled system, 

WIP1eq = 0.78, WIP2eq = 0.5. 
FIGURE 4. State space of the linear coupled 

system. 

 
 

The Dynamics of the Non-linear Coupled System 
 
Non-linear operational rules are introduced to get a number of system states needed 

for faster adaptation of the system. An example is represented by equations 8 and 9. 
 

WIP1(i+1) = WIP1(i) + τ ⋅ (v1(i) − X ⋅ WIP1(i) ⋅ v2(i)) (8) 
WIP2(i+1) = WIP2(i) + τ ⋅ (X ⋅ WIP1(i) ⋅ v2(i) – v3(i)) (9) 

 
Here the control of product flow is non- linear by coupling both buffer levels. 

Additionally, a coupling parameter X was introduced, which has the dimension of the 
production rate COM. This coupling parameter allows the controller to choose a tight 
or loose coupling of the work stations. The dynamic behaviour of this system depends 
sensitively on the coupling parameter X.  

Figure 5 shows the oscillating WIP levels at X = 4. These oscillations are indicated 
by two fixed points in the state space and a diagonal link between them (see figure 6). 
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FIGURE 5. WIP levels of the non-linear coupled 

system with coupling parameter X = 4, 
WIP1eq = (0.43, 0.89), WIP2eq = (0.61, 0.93). 

FIGURE 6. State space of the non-linear 
coupled system with coupling parameter X = 4. 

 
 
Figure 7 shows two typical bifurcation scenarios, which in this case originate from the 
coupling of WIP1 and WIP2. Variation of the coupling parameter X shows different 
qualities of dynamic behaviour. Bifurcation and deterministic chaos occur at large 
values of X, whereas lower values of X lead to the stabilization of the buffer levels 
after a small number of iteration steps similar to the linear coupled system (see figure 3 
and 4). Depending on the value of the production rate COM2, the coupling parameter 
X can be used as a control parameter. It permits the controller to operate the system in 
a stabilized mode or in a multimode. The value of X is limited by the capacity 
restrictions. Large values deliver results beyond the capacity limits. This results from 
neglecting the range of the production rates. Interpretation is difficult in this case, but 
it shows that operation of the system is possible in a wide range of the coupling 
parameter X. 
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FIGURE 7. WIP levels of the non-linear coupled system depending on the coupling parameter X. 
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To satisfy the capacity limits in real production systems, additional restrictions were 

formulated like “stop on overflow” or “stop if buffer empty”. These restrictions force 
the system into a stabilized state (see figure 8).  
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FIGURE 8. WIP levels of the non-linear coupled system with overflow control depending on the 
coupling parameter X. 

 
 
Rapid adaptation can be achieved more easily with a non- linear control mechanism. 

The parameter X can be used to adjust the equilibrium WIP levels in a wide range, 
allowing the exchange of available capacity between different work stations.  

A point of further discussion will be the interpretation of the parameter X regarding 
capacity control. Changing of X only leads to flow regulation. As in the case of 
capacity restrictions, limits to the ability of flow changes should be included. This can 
be done only in a more system specific approach, taking into consideration additional 
system parameters. 

 
 

CONCLUSION 
 
A general approach for modelling and control of production systems was introduced 

that was developed using concepts of Nonlinear Dynamics Theory and PPC research. 
Manufacturing processes and PPC mechanisms are considered to be a unity that build 
a dynamical system. The functions of a PPC system have been introduced as functional 
groups. The possibilities of the dynamical approach have been shown for every group.  

A model was discussed in the last section, demonstrating the function of non- linear 
operational rules, which enable multimode operation (bifurcation, chaos). The 
application of Nonlinear Dynamics control methods is possible in this case of explicit 
deterministic chaos.  

In most cases, the dynamic behaviour of a production system will not be described 
only by a set of operational rules. System state definition will be the primary step.  
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