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Abstract 
 
Re-entrant manufacturing systems can frequently be found in semiconductor industries, where 
the same work systems are used repeatedly for different stages of processing. Due to feedback 
loops in the material flow, re-entrant manufacturing systems show complex dynamic 
behaviour making it difficult to predict or control the performance of the systems. 
 
The first part of the paper presents a dynamical model of a re-entrant manufacturing system. 
This model shows different qualities of dynamic behaviour, depending on the ratio between 
work load and system capacity. The under-loaded system has the properties of a quasi-
periodic driven dissipative dynamical system. The over-loaded system shows dynamics 
between quasi-periodicity and chaos. 
 
The second part of the paper presents a simulation model based on a dynamical control 
concept. The simulation model consists of different modules containing the system 
parameters. The system variables – buffer levels and processing phases – indicate the state of 
the manufacturing process. This model will be used to develop, test and evaluate dynamic 
control methods and to investigate the influence of different control policies on dynamics and 
performance of this re-entrant manufacturing system. 
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Introduction 

Re-entrant Manufacturing Systems and Models 
 
Re-entrant manufacturing systems are production systems that use the same work systems 
repeatedly for different stages of processing. This can be found in job shops as well as in flow 
shops, where the route of a certain type of part through the system is pre-determined, but 
forms one or more feedback loop. Such re-entrant lines can frequently be found in the 
semiconductor industry, where wafers undergo a high number of processing stages at a lower 
number of work systems. 
The re-entrant nature of material flow, disparate processing times for different processing 
stages at a machine, and machine down times make scheduling and control of re-entrant 
manufacturing systems quite difficult. The situation becomes even more complicated, if the 
manufacturing system has to process two or more different types of parts. Then the problem 
of set-ups and lot sizing becomes relevant.  
Investigations of re-entrant manufacturing systems aim to stability of scheduling and release 
policies, optimal control for maximum performance as well as understanding of dynamic 
system behaviour. For these purposes, different types of models were developed in the past. 
They can roughly be classified into flow models, mostly realised by differential equations, and 
discrete models, realised by a queuing network or event-discrete simulation. At both types of 
models, events within the system can be modelled as stochastic or deterministic. A processing 
time, for example, can vary randomly or be constant. 
The most common models of re-entrant manufacturing systems are queuing networks, where 
a machine and its input buffer are represented by a server with a queue in front of it. The 
discrete part flow through the network is described by formulas of stochastic queuing theory. 
Such queuing models are good tools for analysing the overall system performance under 
different release and scheduling policies. This has been done intensively in the past by various 
authors, especially by Kumar and his colleagues, e.g. in [Kumar 94]. 
The analytic investigation of queuing models is appropriate for small systems with only a few 
components. But larger numbers of machines, buffers, and processed parts lead to complex 
queuing networks that are hard to analyse using the formulas of queuing theory. In that case, 
it is appropriate to use discrete-event simulation for analysing the system. The simulation 
provides results about stability and performance of the system, plus the chance to analyse its 
dynamic behaviour. [Beaumariage and Kempf 94] analysed a re-entrant manufacturing system 
via simulation and showed the sensitive dependence of throughput times and output patterns 
on initial conditions as well as scheduling and release policies. They postulated that chaotic 
dynamics were the reason for this unstable behaviour. But for a proper investigation of the 
dynamics of a re-entrant manufacturing system, a deterministic model based on Nonlinear 
Dynamics Theory may be essential.  
Such a dynamical model focuses more on the temporal evolution of the re-entrant 
manufacturing system than on its performance. The system state can be described by 
variables such as “buffer levels” and “processing phases”. These variables span the state 
space of the system. The temporal evolution of the system is represented by trajectories in 
this state space. The state space and the run of the system trajectory can be used for analysing 
the dynamics of the system. Such dynamical models are used by [Hanson et al. 98] and [Diaz-
Rivera et al. 98]. Hanson et al investigated the stability of their model and showed that – 
contrary to [Beaumariage and Kempf 94] – no chaotic behaviour occurs. Diaz-Rivera et al 
used a Poincaré map of a re-entrant manufacturing system and proved that only periodic 
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orbits appear. Another dynamical model of a re-entrant manufacturing system, developed by 
[Katzorke 02], will be presented in part I of this paper. 
 

Control Policies and their Analysis 
 
Control of re-entrant manufacturing systems means an optimal choice and combination of 
release and scheduling policies to realise high throughput and low work-in-process. The 
control policies should be robust against uncertainties and must provide good system 
performance.  
A release policy regulates the part input into the system. It determines the points in time at 
which parts arrive as well as the quantity of any release. Release policies are applicable if the 
re-entrant manufacturing system is more or less autonomous. If it is organised in a pull-type 
production line or supply chain, the arrival of parts into the system is determined exogenous 
and can not controlled by the system. 
A scheduling policy regulates the withdrawal of parts from the buffer for processing at the 
machine. The buffer can contain (i) different types of parts and (ii) parts at different stages of 
processing. The scheduling policy determines which type of part and which processing stage 
has the highest priority for processing next. The most common scheduling policies are the 
First-Come-First-Served policy (FCFS), also known as First-In-First-Out (FIFO), and the 
Last-Buffer-First-Served policy (LBFS), an implementation of the pull principle. A good 
overview about scheduling policies for re-entrant manufacturing systems can be found in 
[Kumar 94].  
From a systems perspective, the control policies represent the information sub-system, which 
generates the dynamics of the physical sub-system (machines, buffers, parts). The release 
policy generates the material input into the system; the scheduling policy controls the material 
flow through the system, thus linking the control policies to the system dynamics. This 
motivates the use of dynamical models, mentioned above, to analyse the system dynamics and 
to develop control policies based on Nonlinear Dynamics Theory. 
 
Due to the specific features of re-entrant manufacturing systems, the development of 
appropriate control policies is not trivial. It is well known that, for example, scheduling 
problems are NP-hard. Therefore, control policies are mostly verified by simulation. It 
provides results about the stability of the chosen control policies as well as performance and 
dynamics of the system. 
Stability of a manufacturing system is simply a matter of work load versus processing 
capacity. That means the arrival rate of parts may not exceed the processing rate of the overall 
system. Unfortunately, in re-entrant manufacturing systems, the total system capacity can not 
easily be derived from single machine capacities. Here, the re-entrant structure of the system 
and the chosen scheduling policy create additional capacity constraints, also called virtual 
bottlenecks [Nielsen 01]. This can lead to an accumulation of parts to infinity despite a low 
work load – the system turns unstable. This phenomenon has led to the extensive 
investigation of various combinations of re-entrant flow structures and scheduling policies, 
especially with respect to their stability properties. The main result was that the LBFS policy 
was proven stable for any kind of re-entrant manufacturing system [Lu et al. 91].  
The goal of controlling re-entrant manufacturing systems is to reach good performance. 
Common performance measures are the total work-in-process and its costs, the throughput 
volume and the mean throughput time and its variance. The total work-in-process and the 
throughput time are related to each other by Little’s Law: Work-in-process = arrival rate of 
parts × throughput time [Kumar 94]. With that, low work-in-process minimises not only costs 
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but also shortens the throughput time of a part. A small variance of the mean throughput time 
ensures meeting the due-dates, allows better planning of releases into the system, and leads to 
better coordination of further operations, such as assembly. Maximising throughput volume 
seems to be a matter of maximising capacity utilisation. But a high capacity utilisation 
requires high work-in-process which leads to high costs and long throughput times. If the 
throughput times increase, the throughput volume decreases temporarily. So the throughput 
volume can not be controlled directly, but is a result of minimising work-in-process and 
throughput time. All performance measures result from the chosen scheduling and release 
policies. Some combinations of policies optimise one performance measure but worsen the 
others. But in general, the LBFS policy is proven to be almost always the best for re-entrant 
manufacturing systems [Lu et al. 91].  
 
Despite extensive investigations of re-entrant manufacturing systems, there is little research 
on developing an understanding about their dynamics. The re-entrant structure and a high 
work load lead to complex dynamic behaviour, while small changes in release or scheduling 
policies lead to large effects on system performance [Beaumariage and Kempf 94]. These 
complex dynamics (and possibly deterministic chaos) make it difficult to predict or control 
the performance of re-entrant manufacturing systems. This motivates an analysis of the 
system dynamics (i) to decide, whether the system is periodic, quasi-periodic or chaotic, and 
(ii) to find a mapping of system attractors to performance measures, which will serve as a 
basis for application of dynamic control methods, derived from Nonlinear Dynamics Theory. 
 
This paper is structured as follows: Part I introduces a specific re-entrant manufacturing 
system, develops a dynamical model, and analyses its dynamics. Part II introduces a 
dynamical concept for manufacturing control and presents a simulation platform for an 
analysis of different scheduling and control policies.  
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Part I 

“2 products – 2 stages” Re-entrant Manufacturing System 
 
The re-entrant manufacturing system considered here consists of a single work system, where 
two varying types of parts have to pass the system twice for processing. Such a manufacturing 
system is depicted in figure 1. The two varying parts – labelled A and B – arrive at this work 
system and enter the input buffer. After the first processing stage, the parts are denoted as A' 
and B' and return to the input buffer. After the second processing stage, the parts are denoted 
as A'' and B'' and leave the work system. 
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B‘‘
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Buffer Machine
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Figure 1: Schematic part flow for the “2 products – 2 stages” re-entrant manufacturing system. Two varying 
parts A and B have to pass the work system twice until they leave it as A'' and B''. 

 
The parts in the input buffer are organized as a queue according to the FIFO policy. No 
advanced scheduling rule is applied. In the case of simultaneous arrival of two or more parts, 
the priority for entering the input buffer is A > B > A' > B'. This means, that at the input of the 
machine, a series of four symbols A, B, A', B' is encountered, which is transformed to the 
corresponding series of A', B', A'', B'' at the output. It is assumed that parts A and B arrive at 
deterministic periodic time intervals tA and tB, respectively. Other relevant parameters are the 
processing times for parts A, B, A', B'. These times are denoted as TA, TB, TA', TB', 
respectively. It is assumed that all these times are constants. For the dynamics of the system it 
is essential that the times tA,B, TA,B,A',B' are arbitrary real numbers. This makes the whole 
process at least as complex as quasi-periodic. Here, the symbolic characterization of the 
process will be used to investigate this system.  
Depending on its capacity, the machine will be able to process all incoming parts, or not. In 
terms of the parameters of the system, i.e. of the times tA,B, TA,B,A',B', this can be formulated as 
follows: Let us consider a time interval T, which is large enough for statistical investigations. 
During this time NA = T / tA parts of type A and NB = T / tB parts of type B are delivered. The 
total processing time for these parts is Tprocess = NA (TA + TA ') + NB (TB + TB' ). 
Thus, the critical processing capacity is described by the parameter τ : 
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The following types of systems can be distinguished according to the value of τ: 
 
 τ < 1: under-loaded system: the incoming part flow does not exhaust the system capacity; 
 τ = 1: balanced system: the incoming part flow fits exactly the processing capacity; 
 τ > 1: over-loaded system: the processing capacity is insufficient to process all incoming 

parts. 
 
Because of this classification, the queue will disappear, remain, or grow with time depending 
on the value of τ. 
 

Dynamical Model 
 
The work system modelled here consists of the two sub-systems “buffer” and “machine” (see 
figure 1). The overall system state thus consists of the current states of the buffer and the 
machine. The current state of the buffer is described by a sequence of symbols in the queue, 
namely A, B, A', B'. The current state of the machine is described by a continuous variable x 
(0 ≤ x ≤ 1) which can be viewed as the processing phase. The phase x grows linearly in time: 
 

 
STdt

dx 1=  (3) 

 
where S (S ∈  A, B, A', B') stands for the part which is in process. As x reaches the value 1, 
the processing of the part ends and the queue is rearranged: the first-in part enters the machine 
and – in the case S = A or S = B – the corresponding part (A' or B') is added to the end of the 
queue as soon as the parts leave the machine. Additionally, every time step tA and tB, parts A 
and B are added to the end of the queue. In the general case of incommensurate arriving times 
tA and tB, this latter operation can be considered as a quasi-periodic driving of the system. 
The parameters governing the dynamics are the times tA, tB, TA, TB, TA', TB'. The following 
parameters are used: tA = 1,  tB = 1+ 5 ,  TA = TA' = (2 2 )-1,  TB = TB' = c-1(2- 2 )( 5 -1)-1. 
Here the parameter c governs the balance condition. Using the parameters, one obtains from 
equation (2): τ  = c-1(1+(c-1)/ 2 ). 
 

Analysis of Dynamics  

Sensitivity to Initial Conditions 
 
The sensitivity of the model to initial conditions is analysed because a sensitive dependence 
of the system dynamics on small changes in initial conditions is an indicator for a chaotic 
dynamics. For this purpose, the model is slightly perturbed by a small shift of the arrival times 
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tA and tB. Then, changes in the symbolic sequence in the queue are observed. In the case of a 
balanced or over-loaded system, the change in the symbolic sequence never disappears, 
because the queue is never empty and the undisturbed arrival times cannot be restored (see 
figure 2). In the under-loaded case, the queue is empty from time to time. In these periods, the 
perturbation of the shifted arrival times disappears, and the unperturbed symbolic sequence is 
restored (see figure 2). Thus, the effect of perturbation on the under-loaded dynamics is only 
temporary: it exists only during the time interval δ t1 < t < δ t2 after the perturbation is 
imposed. Here δ t2 is the time at which the sum of all empty queue states exceeds the 
perturbation and is inversely proportional to (1 – τ). 
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Figure 2: Sensitivity of the symbolic sequences: the difference of the symbols of the perturbed (at time step 4) 
and the unperturbed sequences. Upper panel: under-loaded system c = 1.1, middle panel: balanced system c = 1, 
lower panel: over-loaded system c = 0.9. The perturbation is cp = c · 1.00001 in all cases. 

 

Ergodicity and Stationarity 
 
To test the system for ergodicity, one has to determine how the observed transition 
probabilities in a time series (i.e. probabilities to find pairs of symbols like AB) depend on the 
initial conditions. For c ≠ 1, it is found that the transition probabilities do not depend on initial 
conditions, while for c = 1, such dependence is observed (see figure 3).  
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Figure 3: The probabilities of finding a pair (A, B) (left) resp. a pair (A, A’) (right) in the queue are shown for 
the balanced (solid line, filled circles), the over-loaded (dotted line, filled squares) and for the under-loaded 
(dashed line, filled triangles) systems depending on the initial conditions xA. Note that only the balanced system 
exhibits a dependence of p on the initial conditions. 

 
Qualitatively, such a dependence on the balance condition can be understood as follows: in 
the under-loaded case, the dynamics as shown above are not sensitive to the initial conditions, 
and are fully determined by the quasi-periodic drive (input flow of parts). Therefore, the 
system is ergodic. In the over-loaded case, the queue grows, thus any perturbation in the 
dynamics of the system increases because it affects more and more parts in the queue. As a 
result, effective “averaging” over all initial perturbations occurs, resulting in ergodic 
behaviour. In the balanced case, a perturbation in the initial conditions remains roughly 
constant over time because the queue length is constant. Therefore, different initial conditions 
do not “mix” and the statistics can depend on them, thus breaking the ergodicity. 
 
Stationarity of the observed symbolic time series is ensured in the under-loaded case, where 
the dynamics are essentially driven by the quasi-periodic input, and thus follows the 
stationarity of the quasi-periodic process. The stationarity is tested numerically by the χ2-
criterion 
 

 ∑ +
−

=
cn

i ii

ii

qs
qs 2

2 )(χ  (4) 

 
where si is the number of the observed events of a combination, for instance (A, B), from one 
section of the time series and qi the number of observed events of the identical combination in 
another section of the time series. Further nc is the number of all possible combinations. 
For values of the parameter τ not too close to 1, the stationarity hypothesis could always be 
confirmed. If τ is close to 1 (e.g. τ ≈ 0.995), there are difficulties in applying the test because 
the statistical properties indicate very slow modulations, which would rquire averaging over 
extremely long time intervals. 
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Correlations 
 
For the calculation of the normalized autocorrelation function, a time series zi is used: 
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In the under-loaded case, the autocorrelation function demonstrates a pattern typical of quasi-
periodic dynamics, returning to a value near 1 at a relatively regular rate. This supports the 
above conclusion that in this case, the behaviour of the system is completely determined by 
the quasi-periodic driving. In the case of perfect balance (τ = c = 1), the dynamic behaviour 
depends on initial conditions, so the autocorrelation function depends on them as well. Two 
examples are shown in figure 4. In all observed situations, the correlations are close to 1 for 
some large time shifts k, thus indicating quasi-periodicity. In some cases, the correlations are 
not close to 1 for small k. This means that the process is more complex than a quasi-periodic 
one. 
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Figure 4: Balanced system: Dependence of the correlation functions on the initial conditions, i. e. the start 
position of the parts (left side: xA = 0, xB = 0, xA' = 1 and xB' = 0, right side: xA = 0.5, xB = 0.5, xA' = 0 and 
xB' = 0). Sequences (219 symbols) are measured at the output of the work system and consist of all four symbols 
A, B, A' and B'. The values of these correlation functions return to the value 1 after some time steps. From this, 
one can assume that the system will be quasi-periodic in all cases. 

 
The largest complexity is achieved in the over-loaded case. Here the value of the 
autocorrelation function does not return to 1 even for large time shifts k. An example of the 
autocorrelation function for 0.98 ≤ c ≤ 0.999 is presented in figure 5. This function looks like 
a quasi-periodic one on a small scale, but with a slowly varying envelope with numbers less 
than 1. This envelope is shown in figure 5 for different values of parameter c, i.e. for different 
levels of violation of the balance condition. One can see that for larger deviations of τ from 1, 
the correlations decay faster and to a lower level. 
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Figure 5: The envelope drawn through the peaks of the correlation function. Parameter values used: c = 0.98 
(dashed line), c = 0.99 (dotted-dashed line) and c = 0.995 (solid line). 

 
From the shape of the correlation function it follows that the spectrum is neither discrete nor 
absolutely continuous. Indeed, it neither decreases to zero nor returns to one. Because the 
integrated correlation function does not decrease to a value close to zero, the spectrum is 
apparently not singular continuous. Thus, the situation is quite complicated and it is hardly 
possible to extract the singular continuous component from the spectrum, because it also has 
very strong discrete components. Thus, the results described in the last section are of purely 
conjectural nature. At present, no mathematical descriptions of the spectral measure and the 
properties of the integrated correlation function exist for this type of system.  
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Part II 

Dynamical Concept for Manufacturing Control 
 
Modern manufacturing systems are highly complex in their structures and dynamics. Even 
quite simple systems as investigated in part I of this paper can show complex dynamic 
behaviour. To control such manufacturing systems, concepts from Nonlinear Dynamics 
Theory could help to manage their dynamic complexity and possibly provide strategies and 
methods to control the manufacturing process.  
This motivates the development of a dynamical concept for manufacturing control. Within 
this concept, the manufacturing system is considered to be a dynamical system. Such a system 
has a set of parameters and system variables. The behaviour of the manufacturing system as a 
whole follows its intrinsic dynamics, which are influenced by the system parameters. As a 
result of the dynamics, the system variables change over time. 
The system variables span the state space of the system. The temporal evolution of the system 
is represented by trajectories in this state space. The state space and the run of the system 
trajectory are used for analysing the dynamics of the system and provide possibilities to 
control the system.  
The state of the manufacturing system at any point in time is defined by a point on the 
trajectory in the state space. It is thus possible to influence and control the state and the 
evolution of a manufacturing system by manipulation of the system trajectory. For this, 
several methods for the control of dynamical systems have been developed. 
A dynamical system can be controlled by variation of the system parameters to force the 
system variables onto a desired trajectory. The variables that are usually controlled in a 
manufacturing system are inventory levels or work-in-process. The temporal evolution of 
these variables depends on the system dynamics. The idea behind the dynamical concept is to 
control these dynamics by variation of the system parameters, which are considered flexible 
and capable of being influenced. 
Because of the high number of different parameters of a manufacturing system, they have to 
be combined into the following functional groups: structure, capacity, operational rules, 
release policies, scheduling/queuing policies [Scholz-Reiter et al 02]. These functional groups 
generate the dynamics of a manufacturing system, and enable and influence the part flow 
through the system. They are at first a framework for modelling the manufacturing system 
and thereafter provide possibilities to control the production process.  
Within the dynamical control concept, the variables of the system such as buffer levels and 
processing phases are monitored continuously. These variables represent the current system 
state, which is the basis for controlling the system. Due to the reference to the current state of 
the system, the control takes place continuously and dynamically by an adjustment of the 
functional groups mentioned above to force the buffer contents and therewith the overall 
work-in-process to reach a desired level. The goal is a close-to-real-time control of the 
production process to meet the current requirements of the manufacturing system. 
To verify the dynamical control concept, the “2 products – 2 stages” re-entrant manufacturing 
system – introduced in part I of this paper – is used for developing dynamic control methods. 
Here, the functional group “structure” is considered constant – the other functional groups can 
be used for control. 
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Simulation Model 
 
A simulation platform that provides an event-discrete simulation of the manufacturing process 
was developed with the objective of developing, testing, and evaluating dynamic control 
methods as well as investigating the influence of different control policies on the dynamics of 
the considered re-entrant manufacturing system. An important feature of this simulation 
platform is the possibility to monitor and record all processes and events so as to capture the 
dynamics of the system. 
The simulation platform is based on the dynamical concept introduced in the last section. The 
functional groups are implemented in modules. The main module contains the “structure”, 
here the structure of the “2 products – 2 stages” re-entrant manufacturing system (see figure 
1). This main module consists of further modules (sub-systems) which contain the other four 
functional groups. The sub-system “capacity” contains the capacity of the input buffer 
(minimum and maximum buffer level) and the capacity of the machine (processing times for 
every type of part at every processing stage). Thereby, the processing times can randomly 
vary or be constant. The sub-system “operational rules” controls the buffer input and output. 
It contains rules such as “stop input if buffer full” or “stop output if buffer empty”. The sub-
system “release policy” defines the part input into the system. Parts can arrive at deterministic 
points in time (constant release periods or inter-arrival times respectively) or randomly.  
The sub-system “scheduling/queuing policy” determines the priority of the different types of 
parts at the different stages of processing (i) for entering the input buffer in the case of 
simultaneous arriving of two or more parts and (ii) for the withdrawal of parts from the buffer 
for processing at the machine. The first task of this sub-system is due to the existence of only 
one main buffer for the different types of parts and processing stages. Here, the type of part or 
the stage with the lower priority will be shifted from simulation step t to t+1. The second task 
realises the application of a specific scheduling policy such as LBFS or simply FIFO. But the 
most interesting feature of this sub-system is the possibility to implement dynamic scheduling 
policies. In doing so, the policy picks out a type of part and a stage depending on the current 
system state.  
The current state of the system is defined by the system variables. To grasp this system state, 
the main module “structure” contains monitors for observing the system variables. These are: 
the buffer levels of the different types of parts and processing stages (A, B, A’, B’) as well as 
the total buffer content, the buffer input and output patterns and the progress of processing of 
a part in the machine (processing phase). The temporal evolutions of these system variables 
represent the dynamics of the system. They will be used for analysis of dynamic behaviour 
caused by different static or dynamic control policies.  
To verify the performance of a chosen control policy, there are routines for calculating the 
throughput times for every part and the total throughput as well. It should be noted that no 
mean values are used. The whole simulation model is deterministic. Nevertheless, stochastic 
influences can be implemented additionally.  
 

Analysis of Scheduling Policies 
 
To demonstrate the functioning of the simulation model, the influence of different scheduling 
policies on buffer levels, part processing and throughput is investigated. The processing time 
of every part at every stage is set to 5. The total cycle time of every part including transit 
times is 13. The inter-arrival times of both types of parts A and B are set to 20. Due to the 
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successive processing of every part and every stage, the system is overloaded by factor 1.3. 
This overload is used to point out the effects of the different scheduling policies. 
The scheduling policy applied first is First-Buffer-First-Served (FBFS). This policy prioritises 
the buffer that contains parts waiting for the lowest stage of processing. That means in this 
case, that the parts A and B, which are waiting for processing at its first stage, have a higher 
priority than the parts A’ and B’, which are waiting for processing at its second stage.  
The second scheduling policy applied is Last-Buffer-First-Served (LBFS). This policy 
prioritises the buffer that contains parts waiting for the highest stage of processing. That 
means that the parts A’ and B’, which are waiting for processing at its second stage, have a 
higher priority than the parts A and B, which are waiting for processing at its first stage.  
In both cases, part type A has always a higher priority for processing then part type B. The 
following figures 6 and 7 show (i) the buffer levels of the different types of parts and 
processing stages and the total buffer content, and (ii) the part processing in the machine. 
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Figure 6: Buffer levels and part processing under the FBFS policy. 
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Due to the FBFS policy and the general A-over-B priority, parts A have the highest priority 
and B’ the lowest. This leads to an increasing amount of B’ in the buffer up to a value of 13 
(see figure 6, upper panel). All other buffer levels oscillate only between 0 and 1. So the 
increasing B’ level is responsible for the increasing of the total buffer content up to 14. The 
direct effect of the FBFS policy can be seen in the lower panel of figure 6. All of the 20 
released parts B were processed at its first stage (B) but only 7 parts were processed at its 
second stage (B’). That means that only 7 of 20 released parts could be finished – the 
throughput of part B is only 35 % of its maximum.  
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Figure 7: Buffer levels and part processing under the LBFS policy. 

 
In the case of the LBFS policy and still the general A-over-B priority, parts A’ have the 
highest priority and B the lowest. This leads to an increasing amount of B in the buffer up to a 
value of 7 (see figure 7, upper panel). All other buffer levels oscillate only between 0 and 1. 
So the increasing B level is responsible for the increasing of the total buffer content up to 8. It 
should be noted that the maximum buffer level is only about 57 % of the maximum buffer 
level in the FBFS case. The reason for this fact can be seen in the lower panel of figure 7. 
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Only 14 of 20 released parts B were processed at its first stage (B) but 13 of these 14 parts 
were processed at its second stage (B’). That means that 13 of 20 released parts could be 
finished – the throughput of part B is 65% of its maximum. That means that in comparison 
with the FBFS policy, the LBFS policy leads almost to a doubling of the overall throughput 
and almost to a halving of the maximum buffer level or the overall WIP respectively. 
 
The scheduling policies FBFS and LBFS, which have been analysed here, are static priority 
rules. But in spite of their static nature, such advanced scheduling policies lead to a better 
performance then the widely used FIFO policy in the majority of cases. Furthermore, the 
development of dynamic scheduling policies, which change their priority scheme depending 
on the current system state, is in process. This will provide a dynamic control of the 
processing and completion of parts.  
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Conclusion and Outlook 
 
This paper (i) introduced a dynamical model of a re-entrant manufacturing system and 
analysed its dynamics and (ii) presented a simulation model based on a dynamical concept for 
manufacturing control. 
 
Part I of this paper described a “2 products – 2 stages” re-entrant manufacturing system and 
developed a dynamical model of this system. The dynamics are governed by the ratio of work 
load to system capacity. If the system capacity is larger than the work load, the system is 
under-loaded and has the properties of a quasi-periodically driven dissipative dynamical 
system. One can relate this to the fact that for large production rates, the queue disappears and 
the idle time intervals damp out perturbations.  
When the system is balanced (work load = system capacity), the dissipativity is no longer 
given. In this case, the queue is never empty and the perturbations do not decay. Moreover, 
the dynamics depend on the initial state. This can be related to the fact that the perturbations 
do not grow either.  
In the third case, when the system capacity is less than the work load, the queue grows 
continuously and the dynamics become more complex than in the quasi-periodic case. One 
can understand this as an effect of the growing queue which leads to an effective growth of 
the perturbations. This growth is, however, not fast enough to yield chaos. The correlations in 
the over-loaded case neither return to one nor decay to zero.  
Further investigations need to be devoted to the classification of the particular kind of system 
that seems to be neither periodic nor chaotic. In addition, suitable controlling methods have to 
be developed for an optimisation of such systems.  
 
Part II of this paper introduced a dynamical concept for manufacturing control. Within this 
concept, the manufacturing system is considered to be a dynamical system. The buffer levels 
and the processing phases were defined as system variables. The general parameters of a 
manufacturing system were combined into the functional groups structure, capacity, 
operational rules, release policies, scheduling/queuing policies. 
This dynamical concept was realised in a simulation platform and a simulation model of the 
“2 products – 2 stages” re-entrant manufacturing system. All functional groups were 
implemented in specific modules that can be used to control the system variables. The 
functioning of the simulation model was exemplified using the functional group 
“scheduling/queuing policies” for control of the processing and completion of parts. It was 
shown that the LBFS scheduling policy leads to a much better system performance than the 
FBFS scheduling policy.  
Moreover, the dynamical concept and its implementation in the simulation platform provide a 
dynamic control of the manufacturing process using all functional groups. E.g., the module 
“release policy” can be used for a part release depending on the current system state, the 
module “capacity” can be used for a dynamic adjustment of the buffer or machine capacity 
and so on. Consequently, the developed simulation platform is a useful tool for further work 
regarding dynamic control of manufacturing systems.  
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