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Abstract

To improve their position at the market, many companies concentrate on their core competences and hence cooperate
with suppliers and distributors. Thus, between many independent companies strong linkages develop and production and
logistics networks emerge. These networks are characterised by permanently increasing complexity, and are nowadays
forced to adapt to dynamically changing markets. This factor complicates an enterprise-spreading production planning
and control enormously. Therefore, a continuous flow model for production networks will be derived regarding these
special logistic problems. Furthermore, phase-synchronisation effects will be presented and their dependencies to the set of
network parameters will be investigated.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Production networks are distinguished by a permanently growing complexity and are nowadays more than
ever forced to adapt fast to dynamically changing markets. These factors complicate an enterprise-spreading
production planning and control enormously. Therefore, recent studies of production networks were focussed
on the dynamical aspects and it has been discovered that the material transport within those networks can be
considered as a physical transport problem (e.g., [1,2]) with balance equations for delivered material, as
already mentioned in Ref. [3]. In particular, non-linear behaviour in production systems was investigated [4]
and models were found to exhibit complex, oscillatory and even chaotic behaviour [5-7]. Thus, stability
analyses of different models and topologies were performed [8,9] to detect critical sets of parameters and
stabilising influences. This is in fact very useful for the supression of the bullwhip effect, that describes the
amplification of oscillatory amplitudes of delivery rates along the supply chain [10]. But another very
interesting and sophisticated field of non-linear dynamics, the phenomenon of synchronisation, has not yet
been applied to production systems. It should be investigated, if synchronisation also had such a stabilising
effect on the network or helped to avoid the bullwhip effect. It is of further practical economic importance, if
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synchronisation can lead to a better adjustment of production processes within a supply chain or network and,
thereby, help to improve the competitiveness of these enterprises.

One of the first reports on synchronisation was made in the 17th century by Huygens [11], who discovered
that two pendulum clocks mounted on the same beam oscillated with the same frequency. Since then,
synchronisation was found in many disciplines of physics. For instance, Rayleigh found nearby organ tubes to
synchronise their frequencies [12] and van der Pol studied the synchronisation of electric circuits [13]. More
recently, two semiconductor lasers were found to exhibit synchronisation of their light intensities [14] and for
clusters of driven acoustic cavitation bubbles simulations also showed synchronisation effects [15]. These
examples and numerical simulations (e.g., Ref. [16]) show that synchronisation is a well-defined and well-
examined phenomenon for a large variety of physical applications. But synchronisation occuring in complex
systems such as supply chains or supply nets are neither well investigated nor well understood. Hence, in this
paper we will derive extensions to a continuous flow model for production networks introduced by Helbing
[1], that is based on fluid-dynamics models (e.g., see Ref. [17]). The continuous flow approach has several
advantages, but also disadvantages as well, compared to a discrete event approach. Since in production
systems mostly discrete products have to be handled, a discrete event simulation (DES) model would be
favourable here. But with continuous flow models consisting of a set of differential equations large networks
can be modelled with less computational effort than with a DES model. Additionally, continuous flow models
can take non-linear interactions into account and are suitable for online control under dynamically changing
conditions [2,8].

In contrast to the model introduced by Helbing [1], we will on the one hand restrict the possible network
topologies: many companies concentrate on their core competences and start cooperations with suppliers and
distributors to improve their position at the market. The consequence for the model is, that only one product
can be manufactured in a node. On the other hand, we will focus on existing logistic policies, namely the
sealing-off to competitors. Consequently, the only information an enterprise can access to plan and control its
production is the demand, respectively, the orders of customers. Based on this model, synchronisation
phenomena will be investigated and especially the capability of parameters to change the coupling strength
between the nodes will be identified. This coupling is basically bidirectional, but consists of different types in
both directions. One is given by the flow of information, e.g., orders or buffer levels, and the other one by the
flow of material, e.g., delivered goods or educts. Contrarily, classically coupled systems like Huygens clocks
[11] basically only exhibit one kind of coupling, e.g., elastic forces.

2. Production network model
2.1. Basic topology

We will consider a production network consisting of N nodes i,j € {l... N} manufacturing the products
p e {l...N}. Every node is assumed to produce exactly one product due to its concentration on core
competences. So the specification of a node j determines uniquely the product (p = j) that is produced there.
The nodes are connected by edges which represent the coupling between the nodes. More precisely, the
coupling is realised by the flow of material and information along these edges. Whereas, in this model no
capacity constraints are implemented, only the delivery time 7'; from node i to node j is taken into
consideration.

Every node i is composed of an output buffer O;, where the manufactured goods are stored for delivery, and
a production unit, characterised by the production rate Q,. In order to ensure a continuous production, a
safety stock for every incoming product (educt) is established. Thus, node i also contains input buffers Z; to
store goods from nodes j. Fig. 1 shows the schematic illustration of a network with four nodes and depicts the
construction of a single node i. The production process starts with the delivery of the educts from the input
buffers to the production unit. Their ratios are given by the coefficient matrix ¢/. On the other hand, the
distribution of products from the output buffers to other nodes is described by the coefficient matrix d]’
Naturally, all these coefficients have to fulfil the conditions 0<¢<1, 0<di<land YF d<1, ¥ di<].
To ensure the conservation of the flow, there must be an inflow of resources into the network to every node i,
given by ¥ =1 — Zj]il ¢, and an outflow of products to external consumers, given by dfv’” =1- Zfi] d;
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Fig. 1. The left part illustrates schematically the structure of a network. The nodes correspond to companies and the arrows to the flow of
material and information within the network. The right part depicts the internal structure of such a node: it consists of input buffers F;, a
production unit Q; and an output buffer O;.

2.2. Temporal evolution of the network

Following recent works of Helbing [1], balance equations for the temporal evolution of the input and output
buffers can be derived:

dO N+1
D_ o) > Si0) 0
dr, :
"D s~ doo. @
B Dyi(t) di{(n0;(1)
Sji(t) = min }—/l,/T 5 (3)
Dji(t) = max[0, ] Q(1) - Tji + o} (). @)

Thereby, S;(¢) is the supply of products from node i to node 7 and Dj;(¢) the demand. When calculating the
demand, additionally to ¢,Q,(?) - T}, the difference d;;""'(#) of the actual buffer level to a desired one is taken
into consideration to prov1de enough educts for production in case of a shortage. To satisfy the demand, the
production rate Q,(¢) is adapted to a desired one, determined with the function Q?’”(t). The adaptation is then

achieved by an exponential, but to Q?'(¢) limited growth
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This differential equation leads to the so-called logistic function. In its inflexion point at £ = 0 the slope is
maximum and so the production rate will grow maximally and then converge to optimal value Q. !
represents a characteristic constant for every node, that determines the speed of growth. Fig. 2 shows the
normalised logistic function for different parameters 7. Due to capacity constraints and economic reasons, the
production rate must remain in the interval of a maximum and a minimum production rate
Q""" < Q)< Q™. This will be taken into account when calculating Q7' (see Eq. (9)). Also, non-negativity
of the input buffers must be granted by limiting Q;(¢), respectively, dQ;(¢)/d:

j
90 < — 00+ min Llj <1f(z) + df;f”)]. ®)
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Fig. 2. Visualisation of the time-dependent adaptation of the production rate (Eq. (5)) is shown for different values of the adaptation
constant 7. The integration of that differential equation leads to the logistic function.

The last time-dependent value is the delivery coefficient. It is linearly adapted to a desired value g;(7), which is
calculated with certain logistic policies (see Eq. (11)). The adaptation time J; is characteristic for every node

ddj(r) 1
dt o 9]‘

[9,/(Dji(0)) — d(1)] ()

2.3. Logistic policies

The logistic policies determine the desired production rate, delivery coefficients, input buffer level and
thereby the functions 5§”ﬂer(t), 07"'(1) and g;(1). In order to keep the production running always, a certain
safety stock in the input buffers is needed. Therefore, the averaged overall demand from other nodes and
additionally a safety term has to be in the input buffers to ensure a continuous production in future. This
includes the time-averaged demand D;’-"g multiplied with the replenishment time and an additional amount to
ensure the delivery reliability, which defines the safety factor z; (see Ref. [18]). Thereby, Df}’d is the standard
deviation of the demand.

N+1

331y = Y (T DY + z; - DY/ Ty) — L), (®)
k=1

For average and standard deviation, a gliding window of fixed size is used. Thus, different ordering strategies
are possible. A fast reaction to changes corresponds to a small window size and a slow adaptation to larger
windows.

The optimal production rate depends on the overall demand for produced goods (Zj\; Djj/T}) and on an
optimal output buffer level O":

Qopl(l) _ Iir:l Dii(l) +l1= Oi(t) . . Qnmx (9)
G Ty 07" (1) b

As already mentioned, the production rate must remain in the interval Q;”’” < 0{(1)< O, This can be ensured
by forcing Q%(#) to be in the same interval, because Q7(¢) will be reached asymptotically (see Eq. (5)). To
achieve the optimal value for the output buffer, the relative buffer level O:(r)/O0” ‘(1) is exponentiated by a
constant k € [1, oo[. This reflects a certain filling strategy: a value of k = 1 means that the desired production
rate equals the amount needed to reach O ‘(). The case k>1 represents an overproduction to reach the

optimal buffer level faster and to have a larger safety stock.
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The value for the optimal output buffer level is calculated analogously to the optimal input buffer level in
Eq. (8): the overall average demand and the overall standard deviation of the demand are taken into account.
Again, z; denotes a certain delivery reliability

N+1 N+1
apt Z TUDavq +z; - Z thd\/_l] (10)
j=1 j=1

To adapt the delivery coefficients, the ratio of the gliding average of one node’s demand to the total demand is
considered

0; ~

Jo /'i([ —1)di (i1
SV T D — i

The time horizon 6; has the same properties like the window size of the gliding average Dmg and the gliding

standard deviation Ds’d in Egs. (8) and (10): a fast reaction to changes corresponds to a small window size and

a slow adaptation to larger windows. Furthermore, it is assumed that a node uses the same policies (i.e., time
horizons) for all of the three quantities.

g;(t) =

3. Simulation results

The developed model was analysed for synchronisation effects with the focus on the coupling ability of the
different parameters, which are on the one hand the parameters fixed by the topology: namely the delivery
time 7'; and the coefficient matrix ¢,. Additionally, every node in the network is assumed to prefer the same
delivery reliability of 95%, so that z = z; = 1.64. And on the other hand, there are the parameters determined
by the logistic policies: 1;, 3;, k; and 6.

Their effect on the oscillations and, in particular, on the synchronisation of the nodes was investigated in a
linear supply chain with three nodes. Thereby, node 1 consumed external resources for its production. Node 2
was delivered by node 1 and supplied node 3 with products. Node 3, in turn, had to satisfy an external
demand. Since the external demand in general varies, e.g., seasonal fluctuations, it was realised by the simplest
regularly varying function, a sine function, here with a period length 7" = 15.7 of arbitrary time units and
amplitude of 1 around a mean value of 3.

The adaptation of the delivery coefficient dj was not necessary in a linear supply chain, so a variation of 3;
would not change the oscillatory behaviour. Simulation results also showed that in this example a change of
the time horizon 6 did not influence the oscillation either. Thus, the parameter t; which determines the
adaptation speed of the production rate Q,(¢) was changed, while all the other parameters remained constant.
Fig. 3 shows the oscillation of the single nodes’ input buffers for t; = 0.2 and 1. Thereby, t; = T was constant
for the different nodes in one scenario. It is clearly visible in every subfigure that the input buffer level
amplitudes increase along the supply chain, which is known as the “bullwhip effect” [10]. To identify a
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Fig. 3. Oscillation of the nodes’ input buffers simulated with Egs. (1)-(11) and the parameters T; =1, §; =3, z; = 1.64, k; = 1, 0; = 30
and different values for t; are shown. The bullwhip effect [10], i.e., the amplification of buffer levels along the supply chain, is visible.
(a)1=02,(b)yr=1.
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Fig. 4. The phase differences between the single nodes are shown. Phases were determined via the analytic signal approach and computed
with a hilbert transform (cf. Eqs. (12) and (13)). In part (a), with = = 0.2, only phase difference d®,, is bounded and consequently, only
nodes 1 and 2 have synchronised their phases. Additionally, the graph of d®,; shows phase slips of 7 after every oscillation period. Only an
imperfect phase synchronisation is visible. In part (b), with t = 1, all phase differences are bounded and so a perfect phase synchronisation
was established. (a) T = 0.2, (b) t = 1.

possible phase synchronisation the analytic signal [19] of the oscillations was computed via a hilbert transform
[20,21]

&) = s(t) +1- sp(t) = A(F) - €0, (12)
sy =n"'P.V. /oo % dr (13)

and then the phase @(r) was extracted. As is known, a phase synchronisation is existent if the phases of both
oscillations are locked, i.e., 6@, = [n®| — md;,| < const (e.g., see Ref. [16]). Here, the indices denote the index
of the nodes, i.e., 0P, is the difference between nodes 1 and 2.

All possible phase differences between the three oscillations are shown for T = 0.2 in Fig. 4(a) and for t = 1
in Fig. 4(b). It can clearly be seen that for T =1 a phase synchronisation in the hole supply chain was
established, because all phase differences are bounded to [0P;]|<0.5, |0P13]<0.7 and [0Dy3]<0.5 (see
Fig. 4(b)). In contrast, for 1 = 0.2 only one phase difference is bounded (|0®;3|/<1.5) and the other two
(|0@12], [0D23]) are not (see Fig. 4)(a). For d®,3, after every oscillation period a phase slip can be observed, so
that only an imperfect phase synchronisation was established. Further simulations also showed that a
variation of parameter k, while the other parameter remained constant, did not have a similar effect on
synchronisation, even not on the oscillatory behaviour. A change from k& = 1 to 20 did only marginally effect
the oscillation and thus, the synchronisation behaviour did not change at all in this configuration.

4. Conclusion

In our derived continuous flow model for production networks, applied to a linear supply chain with three
nodes, phase synchronisation was found. But the occurrence of synchronisation strongly depended on the
parameter t, which determines the adaptation speed of the production rate. For values t = 1 and larger,
perfect phase synchronisation of all nodes could be observed. Contrarily, values of t = 0.2 and smaller did not
lead to a synchronisation of all nodes. In the given example, one phase difference indicated an established
phase synchronisation, whereas the other two differences only showed an imperfect phase synchronisation
with phase slips and no visible synchronisation. In contrast, parameter k did not affect the synchronisation at
all. These first simulation results show that a stronger adaptivity to varying demands seems to increase the
synchonisability of the nodes. But still large variations in the buffer levels and also the bullwhip effect are
present. That is due to economic reasons not desirable. Thus in future work, mechanisms to reduce these
effects by synchronisation have to be found. The results presented here lead to the assumption that in more
complex topologies synchonisation of single or even of all nodes can be found.
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